On Hermite Interpolation in Normed Vector Spaces

Hans-Bernd Knoop
Institut für Mathematik der Ruhr-Universität Bochum, Bochum, West Germany
Communicated by Oved Shisha

1. Introduction

The object of one-dimensional Hermite interpolation is to find a polynomial P_{M} of degree at most M that satisfies the conditions:

$$
\begin{equation*}
P_{M}^{(k)}\left(x_{i}\right)=a_{i}{ }^{k} \quad\left(0 \leqslant i \leqslant m, 0 \leqslant k \leqslant \alpha_{i}\right), \tag{1.1}
\end{equation*}
$$

where the $m+1$ distinct points $x_{i} \in \mathbb{R}$, the $m+1$ nonnegative integers $\alpha_{i} \geqslant 0$, satisfying $M+1=\sum_{i=0}^{m}\left(\alpha_{i}+1\right)$, and the arbitrary real data $a_{i}{ }^{k}$ $\left(0 \leqslant i \leqslant m, 0 \leqslant k \leqslant \alpha_{i}\right)$ are given. Now let $x_{0}, x_{1}, \ldots, x_{m}$ be $m+1$ distinct points of a normed vector space E. We shall prove that there always exists a continuous polynomial $P_{M}: E \rightarrow E$ of degree at most M which satisfies (1.1), where now $P_{M}^{(k)}\left(x_{i}\right)$ is the k th Fréchet derivative of P_{M} at x_{i}, and the $m+1$ nonnegative integers $\alpha_{i} \geqslant 0$, satisfying $M+1=\sum_{i=0}^{m}\left(\alpha_{i}+1\right)$, as well as the k-linear continuous symmetric mappings $a_{i}{ }^{k} \in \mathscr{L}_{s}{ }^{k}(E ; E)(0 \leqslant i \leqslant m$, $0 \leqslant k \leqslant \alpha_{i}$) are given. P. M. Prenter [6] has solved this problem for $\alpha_{i}=0$ and $\alpha_{i}=1(0 \leqslant i \leqslant m)$, i.e., the Lagrange and the osculatory Hermite interpolation case. Our solution $P_{M}: E \rightarrow E$ will be composed of the mappings $l_{i}: E \rightarrow \mathscr{L}(E ; E)=\mathscr{L}_{s}^{1}(E ; E)$ which were constructed by Prenter [6].

The one-dimensional Hermite interpolation problem is always solvable by a uniquely determined interpolation polynomial $P_{M}: \mathbb{R} \rightarrow \mathbb{R}$ of degree $\leqslant M$ (see M. Müller [5]). Let the $m+1$ functions $L_{i}(0 \leqslant i \leqslant m)$ be defined by

$$
\begin{equation*}
L_{i}: \mathbb{R} \ni x \mapsto \prod_{\substack{j=0 \\ j \neq i}}^{m}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right)^{\alpha_{j}+1} \in \mathbb{R} . \tag{1.2}
\end{equation*}
$$

Some transformations of the polynomial P_{M}, which is given by M. Müller [5], yield

Theorem 1.1. The interpolation polynomial $P_{M}: \mathbb{R} \rightarrow \mathbb{R}$ has the form

$$
P_{M}(x)=\sum_{i=0}^{m} \sum_{k=0}^{\alpha_{i}} \frac{1}{k!}\left(x-x_{i}\right)^{k} \cdot B_{i k}(x) \cdot L_{i}(x) \cdot a_{i}^{k},
$$

where

$$
\begin{aligned}
B_{i k}(x)= & 1+\sum_{\sigma=1}^{\alpha_{i}-k}(-1)^{\sigma} \sum_{m_{0}=0}^{\alpha_{i}-(k+\sigma)} \sum_{\substack{m_{1}, \ldots, m_{\sigma} \in \mathbb{N} \\
m_{1}+\cdots+m_{\sigma}=m_{0}+\sigma}} \\
& \times \frac{1}{m_{1}!\cdots \cdot m_{\sigma}!} \prod_{a=1}^{o}\left(L_{i}^{\left(m_{\rho}\right)}\left(x_{i}\right) \cdot\left(x-x_{i}\right)^{m_{\rho}}\right) .
\end{aligned}
$$

$L_{i}^{\left(m_{\rho}\right)}\left(x_{i}\right)$ is the m_{ρ} th derivative of L_{i} at the point x_{i}.

2. Preliminary Notes

Let E and F be vector spaces (over the field \mathbb{R} or \mathbb{C}) and $n \geqslant 1$ an integer. Then the mapping $\Delta_{n}: E \rightarrow E^{n}$ is defined by

$$
\Delta_{n}: E \ni x \mapsto(x, \ldots, x) \in E^{n}
$$

If g maps E^{n} into F, then we shall write for abbreviation $g\left(x^{n}\right)$ instead of $\left(g \circ \Delta_{n}\right)(x)$. Moreover let $\Theta_{n}: E^{n} \rightarrow F$ be the zero linear operator from E^{n} to F.

A mapping $f: E \rightarrow F$ is called a homogeneous polynomial (on E into F) of degree n, if there exists an n-linear mapping $f_{n}: E^{n} \rightarrow F$ satisfying $f_{n} \neq \Theta_{n}$ and $f=f_{n} \circ \Delta_{n}$. Let $f: E \rightarrow F$ be a constant mapping and $\operatorname{Im} f=\left\{f_{0}\right\}$; in this case, we shall call f a homogeneous polynomial of degree 0 , and we shall substitute $f\left(x^{0}\right)$ for f_{0}.

A mapping $f: E \rightarrow F$ is called a polynomial (on E into F) of degree $\leqslant M$, if there exist an integer $M \geqslant 0$ and a set $T \subset\{0, \ldots, M\}(T \neq \varnothing)$ such that

$$
\begin{equation*}
f=\sum_{t \in T} f_{i}, \tag{2.1}
\end{equation*}
$$

where each f_{t} is a homogeneous polynomial of degree t. If E and F are normed vector spaces and if f has a representation of the form (2.1), where the f_{t} are continuous homogeneous polynomials, then we shall call f a continuous polynomial of degree $\leqslant M$.

Remark 2.1 will show how to construct a new polynomial out of given polynomials $f_{i}: E \rightarrow E_{i}$ (see H. Cartan [1]).

Remark 2.1. Let $s+2$ vector spaces E, E_{1}, \ldots, E_{s} and F be given; moreover let $f_{i}: E \rightarrow E_{i}(1 \leqslant i \leqslant s)$ be polynomials of degree $\leqslant p_{i}$. If $u: E_{1} \times \cdots \times E_{s} \rightarrow F$ is an s-linear mapping, then the mapping $f: E \rightarrow F$ defined by

$$
f(x)=u\left(f_{1}(x), \ldots, f_{s}(x)\right)
$$

is a polynomial (on E into F) of degree $\leqslant p=\sum_{i=1}^{s} p_{i}$. If the vector spaces
E, E_{1}, \ldots, E_{s} and F are normed and if the s polynomials f_{i} and the s-linear mapping u are continuous, then f is a continuous polynomial of degree $\leqslant p$.

If $f: E \rightarrow F$ is a K-times Fréchet-differentiable mapping between the normed vector spaces E and F, then the k th Fréchet derivative of f at $z_{0} \in E$ ($0 \leqslant k \leqslant K$) can be considered as belonging to $\mathscr{L}_{b}^{k}(E ; F)$, the vector space of all k-linear continuous symmetric mappings of E into F. We obtain

$$
f^{(k)}\left(z_{0}\right)\left(y^{k}\right)=\left(f^{(k)}\left(z_{0}\right) \circ \Delta_{k}\right)(y)
$$

and

$$
f^{(0)}\left(z_{0}\right)\left(y^{0}\right)=f\left(z_{0}\right) .
$$

If g_{1}, \ldots, g_{s} are elements of $\mathscr{L}(E ; E)$, then we shall write

$$
\prod_{i=1}^{s} g_{i} \text { instead of } g_{1} \circ \cdots \circ g_{5}
$$

the composition of the s linear continuous mappings g_{i}.
In the following we will use a generalization of Leibniz's formula.
Theorem 2.2. Let the $s+2$ normed vector spaces E, E_{1}, \ldots, E_{s} and F be given, and the mappings $f_{i}: E \rightarrow E_{i}(1 \leqslant i \leqslant s)$ be K-times differentiable at $z_{0} \in E$ and $u: E_{1} \times \cdots \times E_{s} \rightarrow F$ an s-linear continuous mapping. Then the k th Fréchet derivative ($k \in\{0, \ldots, K\}$) of the mapping

$$
f=u \circ\left(f_{1}, \ldots, f_{s}\right): E \ni x \mapsto u\left(f_{1}(x), \ldots, f_{s}(x)\right) \in F
$$

at the point $z_{0} \in E$ is given by

$$
\begin{aligned}
& f^{(k)}\left(z_{0}\right):\left(y_{1}, \ldots, y_{k}\right) \mapsto \sum_{\substack{i_{1}, \ldots, s_{z}>0 \\
i_{1}+\cdots+l_{s}=k}} \frac{1}{l_{1}!\cdots \cdot l_{s}!} \\
& \quad \times \sum_{\Pi \in \gamma_{k}} u\left(f_{1}^{\left(l_{1}\right)}\left(z_{0}\right)\left(y_{\pi(1)}, \ldots, y_{\pi\left(l_{1}\right)}\right), \ldots, f_{s}^{\left(l_{s}\right)}\left(z_{0}\right)\left(y_{\pi\left(n_{s-1}+1\right)}, \ldots, y_{\pi(k)}\right)\right) .
\end{aligned}
$$

Here γ_{k} is the group of all permutations of the set of indices $\{1, \ldots, k\}$ and $n_{i}=\sum_{j=1}^{i} l_{j}(1 \leqslant i \leqslant s)$.

3. Existence and Construction of a hermite Interpolation Polynomial P_{M}

Let E be a normed vector space. The points $x_{i} \in E$, the nonnegative integers $\alpha_{i} \geqslant 0$ and the arbitrary elements $a_{i}{ }^{k} \in \mathscr{L}_{s}{ }^{k}(E ; E)$ are given as in the first section. We shall prove

Theorem 3.1. There exists a continuous polynomial $P_{M}: E \rightarrow E$ of degree $\leqslant M$ satisfying the Hermite interpolation conditions

$$
P_{M}^{(k)}\left(x_{i}\right)=a_{i}^{k}
$$

where $0 \leqslant i \leqslant m$ and $0 \leqslant k \leqslant \alpha_{i}$.
If we call the vector space of all continuous polynomials (on E into E) of degree $\leqslant M \Pi_{M}$, then we have solved our Hermite interpolation problem, if we can find $M+1$ polynomials $Q_{i k} \in \Pi_{M}\left(0 \leqslant i \leqslant m, 0 \leqslant k \leqslant \alpha_{i}\right)$ such that the following conditions are satisfied:

$$
\begin{align*}
& Q_{i k}^{(l)}\left(x_{i}\right)=\left\{\begin{array}{ll}
a_{i}{ }^{k} & \text { if } l=k \\
\Theta_{l} & \text { if } l \neq k \quad \text { and } \quad 0 \leqslant l \leqslant \alpha_{i} \\
Q_{i k}^{(L)}\left(x_{j}\right)=\Theta_{l} & \text { if } j \neq i, \quad 0 \leqslant j \leqslant m, \quad \text { and } \quad 0 \leqslant l \leqslant \alpha_{j}
\end{array} .\right. \tag{3.1}
\end{align*}
$$

Then

$$
\begin{equation*}
P_{M}=\sum_{i=0}^{m} \sum_{k=0}^{\alpha_{i}} Q_{i k} \tag{3.4}
\end{equation*}
$$

solves our Hermite interpolation problem. The polynomial P_{M} of Theorem 1.1 has such a representation in the case $E=\mathbb{R}$.

We shall construct mappings $L_{i}: E \rightarrow \mathscr{L}(E ; E)$ corresponding to the functions $L_{i}: \mathbb{R} \rightarrow \mathbb{R}$ (see (1.2)). The starting point is the following lemma (see Prenter [6]).

Lemma 3.2. If x_{0}, \ldots, x_{m} are $m+1$ distinct points of a normed vector space E, then there exist continuous polynomials $l_{i}: E \rightarrow \mathscr{L}(E ; E)$ of degree $\leqslant m(0 \leqslant i \leqslant m)$ satisfying

$$
l_{i}\left(x_{j}\right)=\delta_{i j} \cdot \mathrm{id}_{E} \quad(0 \leqslant i, j \leqslant m)
$$

Here id_{E} is the identity map from E to E, defined by $\mathrm{id}_{E}(x)=x$ for every $x \in E$. $\delta_{i j}$ is the Kronecker symbol, and $0 \cdot \mathrm{id}_{E}$ means the element $\Theta_{1} \in \mathscr{L}(E ; E)$.

Now we construct the mappings L_{i}. Let the points x_{0}, \ldots, x_{m} be given. Moreover let $\alpha_{0}, \ldots, \alpha_{m}$ be nonnegative integers satisfying $M=\sum_{i=0}^{m}\left(\alpha_{i}+1\right)-1$. We define the following sets of indices:

For fixed $i \in\{0, \ldots, m\}$ and $N=\{0, \ldots, m\}$

$$
I:=N \backslash\{i\}, \quad k_{i}:=\max \left\{\alpha_{j} ; j \in I\right\}
$$

and

$$
I_{\nu}:=\left\{\mu \in I ; \alpha_{\mu} \geqslant \nu\right\} \quad\left(0 \leqslant \nu \leqslant k_{i}\right)
$$

Then

$$
I=I_{0} \supset I_{1} \supset \cdots \supset I_{k_{i}-1} \supset I_{k_{i}}
$$

According to Lemma 3.2 we construct the mappings $l_{i v}: E \rightarrow \mathscr{L}(E ; E)$ $\left(0 \leqslant \nu \leqslant k_{i}\right)$ corresponding to $x_{\mu}, \mu \in I_{v} \cup\{i\}$. Then

$$
l_{i v}\left(x_{j_{v}}\right)=\delta_{i j_{\nu}} \cdot \mathrm{id}_{E}
$$

where $j_{v} \in I_{v} \cup\{i\}$. If we define L_{i} by

$$
L_{i}(x)=\prod_{v=0}^{k_{i}} l_{i v}(x)
$$

then

$$
L_{i}\left(x_{j}\right)=\delta_{i j} \cdot \mathrm{id}_{E}
$$

where $0 \leqslant i, j \leqslant m$. Now, for $0 \leqslant i \leqslant m$ and $0 \leqslant k \leqslant \alpha_{i}$, let $B_{i k}: E \rightarrow \mathscr{L}(E ; E)$ be defined by

$$
\begin{aligned}
B_{i k}(x)= & \mathrm{id}_{E}+\sum_{\sigma=1}^{\alpha_{i}-k}(-1)^{\sigma} \sum_{m_{0}=0}^{\alpha_{i}-(k+\sigma)} \sum_{\substack{m_{1}, \ldots, m_{g} \in \mathbb{N} \\
m_{1}+\cdots+m_{\sigma}=m_{0}+\sigma}} \frac{1}{m_{1}!\cdots \cdots m_{\sigma}!} \\
& \times \prod_{\rho=1}^{\sigma} L_{i}^{\left(m_{\rho}\right)}\left(x_{i}\right)\left(\left(x-x_{i}\right)^{m_{\rho}}\right)
\end{aligned}
$$

This means, in the notations of Section 2, that the m_{ρ}-linear continuous symmetric mapping $L_{i}^{\left(m_{\rho}\right)}\left(x_{i}\right) \in \mathscr{L}_{s}^{m_{\rho}}(E ; \mathscr{L}(E ; E))$ is applied to $\Delta_{m_{\rho}}\left(x-x_{i}\right)$.

Now we can define the polynomials $Q_{i k} \in \Pi_{M}$. Let

$$
\begin{aligned}
& Q_{i 0}(x)=\left(B_{i 0}(x) \circ L_{i}(x)\right)\left(a_{i}{ }^{0}\right) \\
& Q_{i 1}(x)=\left(a_{i}{ }^{1} \circ B_{i 1}(x) \circ L_{i}(x)\right)\left(x-x_{i}\right)
\end{aligned}
$$

and

$$
Q_{i k}(x)=\frac{1}{k!} \cdot a_{i}^{k}\left(\left(x-x_{i}\right)^{k-1},\left(B_{i k}(x) \circ L_{i}(x)\right)\left(x-x_{i}\right)\right)
$$

where $2 \leqslant k \leqslant \alpha_{i}$.
Before dealing with the conditions (3.1)-(3.3) in the next section, we shall show that the $Q_{i k}$ are continuous polynomials of degree $\leqslant M$.

Lemma 3.3. For each $i=0, \ldots, m$ and each $k=0, \ldots, \alpha_{i}$ the mappings $Q_{i k}$ are elements of Π_{M}.

Proof. According to the construction the mappings $l_{i v}: E \rightarrow \mathscr{L}(E ; E)$ are continuous polynomials of degree $\leqslant\left|I_{v}\right|$, where $\left|I_{\nu}\right|$ is the cardinality of I_{v}. Then Remark 2.1 shows that $L_{i}: E \rightarrow \mathscr{L}(E ; E)$ is a continuous polynomial of degree $\leqslant \sum_{u=0}^{k_{i}}\left|I_{v}\right|=\sum_{j=0, j \neq i}^{m}\left(\alpha_{j}+1\right)$. Furthermore $B_{i k}: E \rightarrow \mathscr{L}(E ; E)$ is a continuous polynomial of degree $\leqslant \alpha_{i}-k$, since

$$
m_{1}+\cdots+m_{\sigma}=m_{0}+\sigma \leqslant \alpha_{i}-(k+\sigma)+\sigma=\alpha_{i}-k
$$

Since $T_{x_{i}}: E \ni x \mapsto x-x_{i} \in E \quad(0 \leqslant i \leqslant m)$ is an element of Π_{1} and $g: E \ni x \stackrel{ }{\mapsto} a_{i}{ }^{0} \in E$ is an element of Π_{0}, repeated use of Remark 2.1 yields that $Q_{i k}: E \rightarrow E$ is a continuous polynomial of degree

$$
\leqslant \sum_{\substack{j=0 \\ j \neq i}}^{m}\left(\alpha_{j}+1\right)+\left(\alpha_{i}-k\right)+k=\sum_{\substack{j=0 \\ j \neq i}}^{m}\left(\alpha_{j}+1\right)+\alpha_{i}=M
$$

4. Proof of the Interpolation Properties of \boldsymbol{P}_{M}

First of all we prove the interpolation property (3.1). To do that we define mappings $C_{i k}=E \rightarrow \mathscr{L}(E ; E)$ by

$$
C_{i 0}(x)=B_{i 0}(x) \circ L_{i}(x)
$$

and

$$
C_{i k}(x)=\left(B_{i k}(x) \circ L_{i}(x)\right)\left(x-x_{i}\right)
$$

for each $k=1, \ldots, \alpha_{i}$. As a result of Theorem 2.2 we have the following
Remark 4.1. Let l be an integer $\geqslant 1,\left(y_{1}, \ldots, y_{l}\right) \in E^{i}$ and $z_{0} \in E$. Then we have

$$
\begin{align*}
Q_{i 0}^{(l)}\left(z_{0}\right)\left(y_{1}, \ldots, y_{l}\right)= & \left(C_{i 0}^{(l)}\left(z_{0}\right)\left(y_{1}, \ldots, y_{l}\right)\right)\left(a_{i}{ }^{0}\right) \tag{4.1}\\
Q_{i 1}^{(l)}\left(z_{0}\right)\left(y_{1}, \ldots, y_{l}\right)= & a_{i}{ }^{1} \circ\left(C_{i 1}^{(i)}\left(z_{0}\right)\left(y_{1}, \ldots, y_{l}\right)\right) \tag{4.2}\\
Q_{i k}^{(i)}\left(z_{0}\right)\left(y_{1}, \ldots, y_{l}\right)= & \frac{1}{k!} \sum_{\substack{l_{1}, \ldots l_{k} \geq 0 \\
l_{1}+\cdots+l_{k}=l}} \frac{1}{l_{1}!\cdots \cdots l_{k}!} \\
& \times \sum_{\Pi \in \gamma_{l}} a_{i}^{k}\left(f_{1}^{\left(l_{1}\right)}\left(z_{0}\right)(\ldots), \ldots, f_{k-1}^{\left(l_{k-1}\right)}\left(z_{0}\right)(\ldots), C_{i k}^{\left(l_{k}\right)}\left(z_{0}\right)(\ldots)\right) \tag{4.3}
\end{align*}
$$

where $f_{\lambda}: E \ni x \mapsto x-x_{i} \in E\left(1 \leqslant \lambda \leqslant k-1\right.$ and $\left.2 \leqslant k \leqslant \alpha_{i}\right)$.

Lemma 4.2. For each $i=0, \ldots, m$ and each $k=0, \ldots, \alpha_{i}$ we have

$$
Q_{i k}^{(k)}\left(x_{i}\right)=a_{i}^{k}
$$

Proof.
(a) For $k=0$ we obtain, based on our definitions,

$$
Q_{i 0}\left(x_{i}\right)=\left(B_{i 0}\left(x_{i}\right) \circ L_{i}\left(x_{i}\right)\right)\left(a_{i}{ }^{0}\right)=\left(\mathrm{id}_{E} \circ \mathrm{id}_{E}\right)\left(a_{i}{ }^{0}\right)=a_{i}{ }^{0} .
$$

(b) For $k=1$, by (4.2), we have

$$
Q_{i 1}^{(1)}\left(x_{i}\right)=a_{i}{ }^{1} \circ C_{i 1}^{(1)}\left(x_{i}\right)
$$

We define $g_{1}: E \rightarrow \mathscr{L}(E ; E)$ by $g_{1}(x)=B_{i 1}(x) \circ L_{i}(x), g_{2}: E \rightarrow E$ by $g_{2}(x)=$ $x-x_{i}$ and $u: \mathscr{L}(E ; E) \times E \rightarrow E$ by $u(h, x)=h(x)$. Using Theorem 2.2 we get in consequence of $g_{2}^{(1)}\left(z_{0}\right)=\mathrm{id}_{E}\left(z_{0} \in E\right)$

$$
C_{i 1}^{(1)}\left(x_{i}\right)=B_{i 1}\left(x_{i}\right) \circ L_{i}\left(x_{i}\right) \circ \operatorname{id}_{E}
$$

therefore

$$
Q_{i 1}^{(1)}\left(x_{i}\right)=a_{i}^{1}
$$

(c) For $k=2, \ldots, \alpha_{i}$ we look at the representation (4.3) where $z_{0}=x_{i}$. Let $\left(l_{1}, \ldots, l_{k}\right)$ be a fixed k-tuple satisfying $l_{1}+\cdots+l_{k}=k$.
(i) Suppose $I_{k} \geqslant 2$. Then there exists a $\lambda(1 \leqslant \lambda \leqslant k-1)$ where $l_{\lambda}=0$. Therefore the corresponding term vanishes because of $f_{\lambda}\left(x_{i}\right)=0$.
(ii) Suppose $l_{\lambda} \geqslant 2$ for some $\lambda \in\{1, \ldots, k-1\}$. Then $f_{\lambda}^{(\nu)}\left(z_{0}\right)=\Theta_{\nu}$ for arbitrary $z_{0} \in E$ and $\nu \geqslant 2$. Thus the corresponding term vanishes.
(iii) We still have to look at the term where $\left(l_{1}, \ldots, l_{k}\right)=(1, \ldots, 1)$. For $\lambda=1, \ldots, k-1$ and arbitrary $z_{0} \in E$ it is valid that $f_{\lambda}^{(1)}\left(z_{0}\right)=\mathrm{id}_{E}$. Moreover $C_{i k}^{(1)}\left(x_{i}\right)=\mathrm{id}_{E}$. Therefore we obtain

$$
a_{i}^{k}\left(y_{\pi(1)}, \ldots, y_{\pi(k)}\right)
$$

The statement for $k=2, \ldots, \alpha_{i}$ follows from (i) to (iii), since the mappings $a_{i}{ }^{k}$ are symmetric.

The property (3.3) follows from the following
Lemma 4.3. Let $i, j \in\{0, \ldots, m\}, i \neq j$, be given. Then
and

$$
\left.\begin{array}{l}
L_{i}^{(l)}\left(x_{j}\right)=\Theta_{l+1} \\
C_{i 0}^{(l)}\left(x_{j}\right)=\Theta_{l+1}
\end{array}\right\} \quad\left(0 \leqslant l \leqslant \alpha_{j}\right)
$$

$$
C_{i k}^{(l)}\left(x_{j}\right)=\Theta_{l}
$$

for $l=0, \ldots, \alpha_{i}$ and $k=1, \ldots, \alpha_{i}$.

The proof of Lemma 4.3 follows immediately from Theorem 2.2. The property (3.2) for $0 \leqslant l<k$ is formulated in the following lemma, and can also be proved without difficulties.

Lemma 4.4. For $i=0, \ldots, m, k=0, \ldots, \alpha_{i}$ and $0 \leqslant l<k$ there is

$$
Q_{i k}^{(l)}\left(x_{i}\right)=\Theta_{l} .
$$

Proof. For $k=1$ the statement holds. Now suppose $k \geqslant 2$. We look at (4.3). Since $l<k$ there exists for each k-tuple (l_{1}, \ldots, l_{k}) at least one $\lambda \in\{1, \ldots, k\}$ for which $l_{\lambda}=0$. If $\lambda=k$, then the corresponding term vanishes because of $C_{i k}\left(x_{i}\right)=0$; if $\lambda \in\{1, \ldots, k-1\}$, then it vanishes since $f_{\lambda}\left(x_{i}\right)=0$.

The property (3.2) for the remaining indices $k<l \leqslant \alpha_{i}$ follows from Lemma 4.5. Here we omit the long, but technical proof of that lemma.

Lemma 4.5. For $i=0, \ldots, m, \alpha_{i} \geqslant 1$ and $l=1, \ldots, \alpha_{i}$ we have

$$
C_{i 0}^{(b)}\left(x_{i}\right)=\Theta_{l+1}
$$

for $i=0, \ldots, m, \alpha_{i} \geqslant 2$ and $1 \leqslant k<l \leqslant \alpha_{i}-k+1$ we obtain

$$
C_{i k}^{(l)}\left(x_{i}\right)=\Theta_{l}
$$

Theorem 3.1 yields
Corollary 4.6. Let $f: E \supset V \rightarrow E$ be α-times Fréchet-differentiable in the open set $V \subset E$ and let $z_{0} \in V$. Choosing $m=0$ and $a_{0}{ }^{k}:=f^{(k)}\left(z_{0}\right)$ for each $k=0, \ldots, \alpha$, then the Hermite interpolation polynomial of degree $\leqslant \alpha$ (at the point z_{0}) is the uniquely determined Taylor polynomial of degree $\leqslant \alpha$ at the point z_{0}.

5. Questions Concerning UniQueness

If E is the product of the n normed vector spaces E_{r}, i.e., $E=\prod_{r=1}^{n} E_{r}$, $p r_{r}: E \rightarrow E_{r}$ is the canonical projection and $j_{r}: E_{r} \rightarrow E(1 \leqslant r \leqslant n)$ is the canonical injection, then we have for a k-linear continuous mapping $u \in \mathscr{L}^{k}(E ; E)$

$$
u=\sum_{r=1}^{n} j_{r} \circ p r_{r} \circ u=: \sum_{r=1}^{n} j_{r} \circ u_{r}
$$

where $u_{r} \in \mathscr{L}^{k}\left(E ; E_{r}\right)$ is a k-linear continuous mapping ($1 \leqslant r \leqslant n$). Let
$T: E \rightarrow E$ be a continuous polynomial of degree $\leqslant M$. Then there exist n continuous polynomials $T_{r}: E \rightarrow E_{r}$ of degree $\leqslant M$ with

$$
T=\sum_{r=1}^{n} j_{r} \circ T_{r} .
$$

If $P_{M}=\sum_{i=0}^{m} \sum_{k=0}^{\alpha_{i}} Q_{i b}$ fulfills the interpolation conditions (3.1)-(3.3), then for the corresponding indices i, j, k, l it follows:

$$
\begin{aligned}
Q_{i k}^{(l)}\left(x_{j}\right) & =\sum_{r=1}^{n} j_{r} \circ\left(p r_{r} \circ Q_{i k}\right)^{(l)}\left(x_{j}\right) \\
& =\left\{\begin{array}{ll}
\sum_{r=1}^{n} j_{r} \circ a_{i r}^{k} & \text { for } j=i \\
\text { and } l=k \\
\sum_{r=1}^{n} j_{r} \circ \Theta_{l r} & \text { for } j \neq i
\end{array} \text { or } l \neq k\right.
\end{aligned} .
$$

Thus there exist n continuous polynomials $P_{r}:=p r_{r} \circ P: E \rightarrow E_{r}$ satisfying the interpolation conditions (3.1)-(3.3) for arbitrarily given $a_{i r}^{k} \in \mathscr{L}_{s}^{k}\left(E ; E_{r}\right)$ and the zero linear operators $\Theta_{l r} \in \mathscr{L}^{\prime}\left(E ; E_{r}\right)(r=1, \ldots, n)$.
Now we look at the normed vector space $E=\mathbb{R}^{n}$. Then there always exists for $m+1$ arbitrarily given points $x_{i} \in \mathbb{R}^{n}$ and for $m+1$ nonnegative integers α_{i}, satisfying $M+1=\sum_{i=0}^{m}\left(\alpha_{i}+1\right)$, a continuous polynomial $P_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree $\leqslant M$ with

$$
P_{M}^{(k)}\left(x_{i}\right)=a_{i}{ }^{k} \quad\left(0 \leqslant i \leqslant m, 0 \leqslant k \leqslant \alpha_{i}\right),
$$

where the k-linear symmetric mappings $a_{i}{ }^{k} \in \mathscr{L}_{3}{ }^{k}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ are given. For $m=0$ and arbitrarily given mappings $a_{0}{ }^{k} \in \mathscr{L}_{s}{ }^{k}\left(\mathbb{R}^{n} ; \mathbb{R}\right)\left(0 \leqslant k \leqslant \alpha_{0}\right)$ we get a uniquely determined Hermite interpolation polynomial.

Thus we have a generalization of the one-dimensional Hermite interpolation, which doesn't possess for $n \geqslant 2$ and $m \geqslant 1$ a uniquely determined solution, in general. We shall illustrate these facts on the basis of the number of the interpolation conditions and of the number of the coefficients of a polynomial $P_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree $\leqslant M$. A homogeneous polynomial $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree k possesses $\binom{k+n-1}{k}$ coefficients (see C. Coatmelec [2]). Therefore a polynomial $P_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree M consists of

$$
\sum_{k=0}^{M}\binom{k+n-1}{k}=\binom{M+n}{M}
$$

coefficients. Thus the Taylor polynomial of degree α_{0} is described by $\binom{\alpha_{0}+n}{\alpha_{0}}$ real numbers, which determine the k-linear symmetric mappings $a_{0}{ }^{k} \in \mathscr{L}_{s}{ }^{k}\left(\mathbb{R}^{n} ; \mathbb{R}\right)\left(0 \leqslant k \leqslant \alpha_{0}\right)$. For $m=1$ and the nonnegative integers α_{0}, α_{1} we obtain by the k-linear symmetric mappings $a_{i}{ }^{k}\left(i=0,1,0 \leqslant k \leqslant \alpha_{i}\right)$ altogether

$$
\binom{\alpha_{0}+n}{\alpha_{0}}+\binom{\alpha_{1}+n}{\alpha_{1}}
$$

conditions for the determination of

$$
\binom{\alpha_{0}+\alpha_{1}+n+1}{\alpha_{0}+\alpha_{1}+1}
$$

unknowns. For $n \geqslant 2$ we have

$$
\begin{aligned}
\binom{\alpha_{0}+\alpha_{1}+n+1}{\alpha_{0}+\alpha_{1}+1} & =\sum_{k=0}^{\alpha_{0}+\alpha_{1}+1}\binom{k+n-1}{k} \\
& =\sum_{k=0}^{\alpha_{0}}\binom{k+n-1}{k}+\sum_{k=\alpha_{0}+1}^{\alpha_{0}+\alpha_{1}+1}\binom{k+n-1}{k} \\
& >\binom{\alpha_{0}+n}{\alpha_{0}}+\sum_{l=0}^{\alpha_{1}}\binom{l+n-1}{l} \\
& =\binom{\alpha_{0}+n}{\alpha_{0}}+\binom{\alpha_{1}+n}{\alpha_{1}}
\end{aligned}
$$

because of

$$
\binom{\alpha_{0}+n+l}{\alpha_{0}+1+l}>\binom{n-1+l}{l} \quad \text { for } \quad l=0, \ldots, \alpha_{1}
$$

Thus we get for $n \geqslant 2$ less interpolation conditions than unknowns and therefore no unique solution of the Hermite interpolation problems for $m \geqslant 1$.

If we consider certain tensor product Hermite interpolation problems, i.e., choosing certain distributions of points in \mathbb{R}^{n}, prescribing partial derivatives at the points $x_{i} \in \mathbb{R}^{n}$ and interpolating with polynomials $p \in \otimes_{r=1}^{n} \Pi_{M_{r}}$, the tensor product of n spaces of polynomials in one variable, then we obtain uniquely determined Hermite interpolation polynomials (see W. Haussmann [3, 4]).

References

1. H. Cartan, "Calcul Différentiel," Hermann, Paris, 1967.
2. C. Coatmelec, Approximation et interpolation des fonctions différentiables de plusieurs variables, Ann. Sci. Ecole Norm. Sup. (3) 83 (1966), 271-341.
3. W. Haussmann, Tensorprodukte und mehrdimensionale Interpolation, Math. Z. 113 (1970), 17-23.
4. W. Haussmann, Tensorproduktmethoden bei mehrdimensionaler Interpolation, Math. Z. 124 (1972), 191-198.
5. M. Müller, Über Interpolation mittels ganzer rationaler Funktionen, Math. Z. 62 (1955), 292-309.
6. P. M. Prenter, Lagrange and Hermite interpolation in Banach spaces, J. Approximation Theory 4 (1971), 419-432.
