JOURNAL OF APPROXIMATION THEORY 11, 327-337 (1974)

On Hermite Interpolation in Normed Vector Spaces
HaNs-BERND KNoOP

Institut fiir Mathematik der Ruhr-Universitit Bochum, Bochum, West Germany

Communicated by Quved Shisha

1. INTRODUCTION

The object of one-dimensional Hermite interpolation is to find a polynomial
P, of degree at most M that satisfies the conditions:

PPx)=ar ©O<i<m0<k<ay), (1.1)

where the m -+ 1 distinct points x; e R, the m 4+ 1 nonnegative integers
a; = 0, satisfying M+ 1=737(x+ 1), and the arbitrary real data a;*
0O <im0 <k < o)are given. Now let x;, x4 ,..., X, be m -+ 1 distinct
points of a normed vector space E. We shall prove that there always exists a
continuous polynomial P,: E — E of degree at most M which satisfies (1.1),
where now P{’(x;) is the kth Fréchet derivative of P, at x; , and the m -+ 1
nonnegative integers o; >> 0, satisfying M - 1 = Z:';O (2; + 1), as well as
the k-linear continuous symmetric mappings a,* € LXE; E) (0 <i < m,
0 < k < «;) are given. P. M. Prenter [6] has solved this problem for o; = 0
and a; = 1 (0 < i < m), i.e., the Lagrange and the osculatory Hermite
interpolation case. Our solution P,,: E — E will be composed of the mappings
l;: E— Z(E; E) = ZME; E) which were constructed by Prenter [6].
The one-dimensional Hermite interpolation problem is always solvable by
a uniquely determined interpolation polynomial Py;: R — R of degree < M
(see M. Miiller [5]). Let the m + 1 functions L; (0 << i <C m) be defined by

o+l

L;: RBXI—»H(—xj) eR. (1.2)

=0 xl x]
j#i

Some transformations of the polynomial P,, , which is given by M. Miiller [5],
yield

THEOREM 1.1. The interpolation polynomial P,;: R — R has the form

PM(x) Z Z k' (x - xl) sz(x) L (x) a

=0 k=0
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where
a~k a;—(k+o)
Bik(x) =1+ Z (=D Z Z
a=1 my=0 Myrees myeN
Myt s tmg=mgto
X H L x)  (x — x)™)
ml! e s ma! oot T % i ‘

Limo(x,) is the mth derivative of L; at the point x; .

2. PRELIMINARY NOTES

Let E and F be vector spaces (over the field R or C) and n > 1 an integer.
Then the mapping 4,: E — E™ is defined by

4, Es x> (x,...,x)€ E™.

If g maps E” into F, then we shall write for abbreviation g(x*) instead of
(g 4,)(x). Moreover let €,: E» — F be the zero linear operator from E" to
F.

A mapping f: E — F is called a homogeneous polynomial (on E into F)
of degree n, if there exists an »-linear mapping f,,: E* — Fsatisfying f,, # O,
and f = f, -4, . Let f* E— F be a constant mapping and Im f = {f}; in
this case, we shall call f a homogeneous polynomial of degree 0, and we shall
substitute f(x°) for f; .

A mapping f: E — Fis called a polynomial (on E into F) of degree < M, if
there exist an integer M > 0 and a set TC{0,..., M} (T = @) such that

f=X/5, 2.1)
1eT
where each f; is a homogeneous polynomial of degree 7. If E and F are normed
vector spaces and if f has a representation of the form (2.1), where the f; are
continuous homogeneous polynomials, then we shall call ' a continuous
polynomial of degree << M.
Remark 2.1 will show how to construct a new polynomial out of given
polynomials f;: E — E, (see H. Cartan [1]).

Remark 2.1. Llet s+ 2 vector spaces E, Ej,..., E, and F be given;
moreover let fi: E— E; (1 < i < s) be polynomials of degree < p;. If
u. E; X - X E;— F is an s-linear mapping, then the mapping f: E — F

defined by
J(x) = u(f1(x),..., £(x))

is a polynomial (on E into F) of degree < p — Y;_, p; . If the vector spaces
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E, E,,.. E, and F are normed and if the s polynomials f; and the s-linear
mapping u are continuous, then f'is a continuous polynomial of degree < p.

If f: E — Fis a K-times Fréchet-differentiable mapping between the normed
vector spaces E and F, then the kth Fréchet derivative of f at zge £
(0 << k < K) can be considered as belonging to Z4(E; F), the vector space
of all k-linear continuous symmetric mappings of E into F. We obtain

FBz)(y®) = (S ®zo) » 4i)(¥)
FOz)(¥°) = f(zo)-

If g, ,..., g, are elements of Z(E; E), then we shall write

and

g:; insteadof g o--og,,

—.

i=1

the composition of the s linear continuous mappings g; .
In the following we will use a generalization of Leibniz’s formula.

THEOREM 2.2. Let the s + 2 normed vector spaces E, E, ,..., E; and F be
given, and the mappings f;: E — E; (1 < i < s) be K-times differentiable at
2,€E and u Ey X -+ X E,— F an s-linear continuous mapping. Then the
kth Fréchet derivative (k €{0,..., K}) of the mapping

f=ue(f1sn f): E3 x> u(fo(%),..., f()) €F

at the point z, € E is given by

FOZ): (P15 Vi) > Z AN
P SN G 3¢ 8t
I
x ¥ u(f{’l)(zo)(y"m 3o n(zl))’---’fil‘)(zo)(ynms_ﬁl) s+ Vo))

ey,

Here v, is the group of all permutations of the set of indices {1,..., k} and
n; = 2:'=1 LA Ki<ys).

3. EXISTENCE AND CONSTRUCTION OF A HERMITE
INTERPOLATION POLYNOMIAL P,,

Let E be a normed vector space. The points x; € E, the nonnegative
integers «; >> 0 and the arbitrary elements a/* € ZX(E; E) are given as in
the first section. We shall prove
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THEOREM 3.1. There exists a continuous polynomial Py;: E — E of degree
< M satisfying the Hermite interpolation conditions

PY/;)(xi) = af,
where 0 <i<<mand0 <k < «;.

If we call the vector space of all continuous polynomials (on E into E) of
degree << M Il,,, then we have solved our Hermite interpolation problem,
if we can find M - 1 polynomials @, €11, (0 < i < m, 0 < k < a;) such
that the following conditions are satisfied:

Wy fak if 1=k (3.1)
Qix(x:) = O if I#£k and 0<I<a (3.2)
Bx) = 0, if j#i, 0<j<m, and 0<I<q. (3.3)

Then

e

™Mz

.
I
=

PM = sz (3-4)

k=0

i

solves our Hermite interpolation problem. The polynomial P,, of Theorem 1.1
has such a representation in the case £ = R.

We shall construct mappings L,: E — £(E; E) corresponding to the
functions L;: R — R (see (1.2)). The starting point is the following lemma
(see Prenter [6]).

Lemma 3.2, If xq,..., X, are m -+ 1 distinct points of a normed vector
space E, then there exist continuous polynomials I;: E — L(E; E) of degree
< m (0 < i < m) satisfying

Ii(x;) = 8;; - idg 0 <i,j<m).
Here idy is the identity map from E to E, defined by idg(x) = x for every x € E.
8;; is the Kronecker symbol, and 0 - idg means the element 0, ¢ ¥(E; E).

Now we construct the mappings L,. Let the points xg,..., x, be
given. Moreover let o,..., , be nonnegative integers satisfying
M = 37, (o, + 1) — 1. We define the following sets of indices:

For fixed i €{0,..., m} and N = {0,..., m}

I:= N\{i}, k;:=max{a;;jel}

and
I :={pecl;a, =v 0 <v < k).
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Then
I=05LDOLD DL ,01I,.

According to Lemma 3.2 we construct the mappings /,,: E — #(E; E)
(0 < v < k) corresponding to x,, , p € I, U {i}. Then

liv(xa',,) = Sijv -idg,

where j, € I, U {i}. If we define L, by
k;
Lix) = [] 1),
v=0
then

where 0 <<i, j<<m. Now, for 0 <i<m and 0 <k < oy, let
B;: E — Y(E; E) be defined by

a;—K o, —(k+o) 1
Bi - .d '—1 e
W) = idg + u;l (=D mn{:o mw;moeN gl

X ]‘[ L™ (x)((x — x,)™).

p=1

This means, in the notations of Section 2, that the m,-linear continuous
symmetric mapping L{™'(x,) € Z"(E; ¥(E; E)) is applied to 4,, (x — Xx;).
Now we can define the polynomials Q,, € I1,, . Let

Qio(x) = (Big(x) o L{(x))}a")
0a(x) = (@' o By(x) o L{x))(x — x;)
and
sz(x) k((x — X )k -1 (sz(x) L,(x))(x - xz))
where 2 < k < ;.
Before dealing with the conditions (3.1)-(3.3) in the next section, we shall

show that the Q;; are continuous polynomials of degree < M.

LemMMA 3.3. For eachi = 0,...,m and each k = 0,..., o; the mappings Q,
are elements of 11, .

640/11/4-4
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Proof. According to the construction the mappings [,,: E — Z(F; E) are
continuous polynomials of degree < | 1, |, where | I, | is the cardinality of 7, .
Then Remark 2 1 shows that L;; E — Z(E; E) is a continuous polynomial
of degree < ): Lol =Yg (o + 1). Furthermore B.: E — Z(E; E)
is a continucus polynomial of degree < «; — £k, since

mA+ - tm=myt+o <L, —(k+o+o=ua —Fk

Since T,:E>x—>x—x;eE (0 <i<m) is an element of I1, and
g Esx > a” € E is an element of Ho, repeated use of Remark 2.1 yields
that Q,;: E — Eis a continuous polynomial of degree

Z{a —i—l)+(a7—k)+k—2(tx,+])+& =

4. PROOF OF THE INTERPOLATION PROPERTIES OF P,

First of all we prove the interpolation property (3.1). To do that we define
mappings Ciul £ — L(E;, E) by

Cio(x) = Byy(x) * Li(x)
and

Cir(x) = (Bulx) ° Li(x))(x — x;)
foreachk = 1,..., &; . As a result of Theorem 2.2 we have the following

Remark 4.1. let I be an integer > 1, (¥,,..., 7)) € E! and z, € E. Then
we have

OBy s 1) = (CN 2Ny 1o ¥DNaS) 4.1
0D (P1 v-s Y1) = a1 0 (CR(EN Vi 3oves ) 4.2)
{
AEN PRGN ES ~1—, Y I
PP A I L
Lyeeetlp=1
X Y @ I Dens P2 ) ) CR(z)(.))
I'Ie-y,

4.3)
where fi: Eax—>x —x;e EQ1 <A <k—1and2 <k < o).
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LeMMA 4.2. For eachi = 0,...,m and each k = 0,..., o; we have

leﬁ)(xz) = a/.
Proof.

(a) For &k = 0 we obtain, based on our definitions,
Quo(x:) = (Bio(x:) o Li(x))(a,) = (idg ¢ idg)(a)®) = a®.
(b) For k = 1, by (4.2), we have
0(x) = a*> C(x).
We define gy: E — Z(E; E) by g1(x) = B;j(x) o L(x), go: E — E by gy(x) =

x — x; and u: L(E; E) X E — E by u(h, x) = h(x). Using Theorem 2.2 we
get in consequence of gi¥(zy) = ide (2, € E)

C(x) = Bulx) o L(x)) o id ;
therefore
g.)(xi) = at.
(¢) For k = 2,..., a; we look at the representation (4.3) where z, = x; .
Let (4 ,..., [;) be a fixed k-tuple satisfying [, 4- --- + [, = k.
(i) Supposel, > 2. Then thereexistsa A(l << A <<k — 1) where/, = 0.
Therefore the corresponding term vanishes because of fi(x;) = 0.
(i) Suppose 1, > 2 for some Ae{l,..., k — 1}. Then f{)(z,) =6, for
arbitrary z, € E and v > 2. Thus the corresponding term vanishes.

(iii) We still have to look at the term where (/, ,..., i) = (1,..., 1). For
= l,...,k — 1 and arbitrary z, e E it is valid that f{I(z,) = idg .
Moreover C(x;) = idz . Therefore we obtain

aF(Yr() s-s Vet))-

The statement for k = 2,..., o, follows from (i) to (iii), since the mappings a;*
are symmetric.
The property (3.3) follows from the following

LemMa 4.3, Leti, je{0,...,m}, i 5 j, be given., Then

L;l)(xf) = 0,

COx) — @, Osis®

and
Cix;) = 6,

Jorl=0,.,q;andk = 1,..., ;.
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The proof of Lemma 4.3 follows immediately from Theorem 2.2. The
property (3.2) for 0 <</ < k is formulated in the following lemma, and can
also be proved without difficulties.

Lemma 44. Fori=0,.,m k = 0,...,0; and 0 < | < k there is

0(x) = 0,.

Proof. For k = 1 the statement holds. Now suppose & > 2. We look
at (4.3). Since / < k there exists for each k-tuple (/4 ,..., /) at least one
Ae{l,.., k} for which [, = 0. If A = k, then the corresponding term vanishes
because of C,(x;) = 0; if Ae{l,..., k — 1}, then it vanishes since fi(x;) = 0.

The property (3.2) for the remaining indices k <</ < «; follows from
Lemma 4.5. Here we omit the long, but technical proof of that lemma.

LemMA 4.5, Fori=0,..,m, o, = landl = 1,..., a; we have

CR(x) = Oy ;
Jori=0,.,m o =2andl <k <l < o; —k + 1 we obtain
CR(x) = 6.
Theorem 3.1 yields

COROLLARY 4.6. Let f: ED V — E be o-times Fréchet-differentiable in the
open set VC E and let zye V. Choosing m = 0 and a* = f%(z,) for each
k =0,...,«, then the Hermite interpolation polynomial of degree < «
(at the point z,) is the uniquely determined Taylor polynomial of degree < «
at the point z, .

5. QUESTIONS CONCERNING UNIQUENESS

If E is the product of the n normed vector spaces E, , i.e., E = H:;l E,,
pr,: E— E, is the canonical projection and j,: E, — E (I < r < n) is the
canonical injection, then we have for a k-linear continuous mapping
ue LYE; E)

n n
u:er°Prr°u:5er°“r,
r=1 r=1

where u, ¢ L*(E; E,) is a k-linear continuous mapping (1 < r << n). Let
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T: E — E be a continuous polynomial of degree <X M. Then there exist n
continuous polynomials T,: E — E, of degree << M with

T=YjoT,.

r=1

If Py = Yoo Siaio Qi fulfills the interpolation conditions (3.1)-(3.3), then
for the corresponding indices i, j, k, / it follows:

Q) = 3 Jre (preo Q)

jeo b, for j=i and [I=k

M=

r=1

Y jro®, for j#i or l#k.

=1

Thus there exist » continuous polynomials P, := pr, o P: E — E, satisfying
the interpolation conditions (3.1)-(3.3) for arbitrarily given af, € Z¥E; E,)
and the zero linear operators &, ¢ LYE; E,) (r = 1,..., n).

Now we look at the normed vector space E = R”. Then there always exists
for m + 1 arbitrarily given points x;€R" and for m + 1 nonnegative integers
o, , satisfying M + 1 = Y;- (a; + 1), a continuous polynomial P,,: R* — R
of degree << M with

PRGx)=ar (0<i<m0<k<a),

where the k-linear symmetric mappings a;* € Z*(R"; R) are given. Form = 0
and arbitrarily given mappings af € LXHR:; R) (0 < k < o) we get a
uniquely determined Hermite interpolation polynomial.

Thus we have a generalization of the one-dimensional Hermite inter-
polation, which doesn’t possess for n > 2 and m > 1 a uniquely determined
solution, in general. We shall illustrate these facts on the basis of the number
of the interpolation conditions and of the number of the coefficients of
a polynomial Py: R* — R of degree < M. A homogeneous polynomial
p: R* — R of degree k possesses (**21) coefficients (see C. Coatmelec [2]).
Therefore a polynomial P,: R® — R of degree M consists of

) -

k=0
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coefficients. Thus the Taylor polynomial of degree «, is described by %™
real numbers, which determine the k-linear symmetric mappings
a)* € LXR"; R) (0 < k < o). For m = 1 and the nonnegative integers o, ,
@, we obtain by the k-linear symmetric mappings ¢* = 0, 1,0 < k < «,)
altogether

g+ 1 oy -+ A

(" )+ ()

) o
conditions for the determination of

(et )

unknowns. For n > 2 we have

agtay+1i

k _
SRS B A
ag . agtag+l & _
S LA E I (R
=2+ BT

“ (o)

ag 0y

because of
(221’111;)>(n—11+1) for /=0,..,q.

Thus we get for n > 2 less interpolation conditions than unknowns and
therefore no unique solution of the Hermite interpolation problems for
m = 1.

If we consider certain tensor product Hermite interpolation problems, i.e.,
choosing certain distributions of points in R”, prescribing partial derivatives
at the points x; € R» and interpolating with polynomials p e ®,_, Iy, ,
the tensor product of »n spaces of polynomials in one variable,
then we obtain uniquely determined Hermite interpolation polynomials
(see W. Haussmann [3, 4]).
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