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1. INTRODUCTION

The object of one-dimensional Hermite interpolation is to find a polynomial
PM of degree at most M that satisfies the conditions:

(0 :(; i :(; m, 0 :(; k :(; (Xi), (1.1)

where the m + 1 distinct points Xi E IR, the m + I nonnegative integers
(Xi ?: 0, satisfying M + 1 = L::o (exi + 1), and the arbitrary real data al
(0 :(; i :(; m, 0 :(; k :(; (Xi) are given. Now let Xo , Xl"'" xm be m + 1 distinct
points of a normed vector space E. We shall prove that there always exists a
continuous polynomial PM: E ---+ E of degree at most M which satisfies (1.1),
where now P~)(Xi) is the kth Frechet derivative of PM at Xi, and the m + 1
nonnegative integers exi ?: 0, satisfying M + 1 = L::o (exi + I), as well as
the k-linear continuous symmetric mappings al E 2/(E; E) (0 :(; i :(; m,
o :(; k :(; exi) are given. P. M. Prenter [6] has solved this problem for (Xi = 0
and (Xi = I (0 :(; i :( m), i.e., the Lagrange and the osculatory Hermite
interpolation case. Our solution PM: E ---+ Ewill be composed of the mappings
Ii: E ---+ 2(E; E) = 2/(E; E) which were constructed by Prenter [6].

The one-dimensional Hermite interpolation problem is always solvable by
a uniquely determined interpolation polynomial PM: IR ---+ IR of degree :( M
(see M. Muller [5]). Let the m + 1 functions L i (0 :(; i :(; m) be defined by

m ( X _ x. )"';+1
L i : IR 3 X f--+ I! Xi _ ;j E IR.

r,.i

(1.2)

Some transformations of the polynomial PM, which is given by M. Miiller [5],
yield

THEOREM I. I . The interpolation polynomial PM: IR ---+ IR has the form
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where
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Bik(X) = 1 + L (-1)U I L
u=l mo=o ml' •..• mueN

m1+,··+ma=mo+a

L~mp)(Xi) is the moth derivative of L i at the point Xi .

2. PRELIMINARY NOTES

Let E and F be vector spaces (over the field IR or q and n ~ 1 an integer.
Then the mapping I n: E -- En is defined by

I n : E3 X~ (x, ... , x) E En.

If g maps En into F, then we shall write for abbreviation g(xn) instead of
(g 0 Lln)(x). Moreover let en: En -- Fbe the zero linear operator from En to
F.

A mapping f: E -- F is called a homogeneous polynomial (on E into F)
ofdegree n, if there exists an n-linear mapping!n: En -- Fsatisfying!n =1= en
and f = fn 0 LIn . Let f: E -- F be a constant mapping and Imf = {fo}; in
this case, we shall call f a homogeneous polynomial of degree 0, and we shall
substitute f(xO) for 1'0 .

A mappingf: E --+ F is called a polynomial (on E into F) ofdegree:;::;; M, if
there exist an integer M ~ °and a set TC {O,..., M} (T =f 0) such that

f= Lit,
teT

(2.1)

where eachft is a homogeneous polynomial of degree t. If E and Fare normed
vector spaces and iffhas a representation of the form (2.1), where theft are
continuous homogeneous polynomials, then we shall call f a continuous
polynomial ofdegree :;::;; M.

Remark 2.1 will show how to construct a new polynomial out of given
polynomials/;: E -+ Ei (see H. Cartan [1]).

Remark 2.1. Let s + 2 vector spaces E, E1 , ... , E 8 and F be given;
moreover let fi: E -- E i (1 :;::;; i ~ s) be polynomials of degree ~ Pi' If
u: E1 X ... X E 8 -- F is an s-linear mapping, then the mapping f: E -- F
defined by

f(x) = u(fl(X), ... ,f.(x))

is a polynomial (on E into F) of degree :;::;; p = "L.:=1 Pi . If the vector spaces
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E, E1 , •.. , E s and Fare normed and if the s polynomials h and the s-linear
mapping u are continuous, thenfis a continuous polynomial of degree ~ p.

Iff: E -+ Fis a K-times Frechet-differentiable mapping between the normed
vector spaces £ and F, then the kth Frechet derivative of f at Zo E E
(0 ~ k ~ K) can be considered as belonging to :t'."(E; F), the vector space
of all k-linear continuous symmetric mappings of E into F. We obtain

and

If gl ,... , g, are elements of 2(E; E), then 'we shall write

•n gi instead of g1 0 ... 0 g. ,
i~1

the composition of the s linear continuous mappings gi .
In the following we will use a generalization of Leibniz's formula.

THEOREM 2.2. Let the s + 2 normed vector spaces E, £1 ,..., E. and F be
given, and the mappings h: E -+ Ei (l ~ i ~ s) be K-times differentiable at
Zo E E and u: E1 X ••• x E. - Fan s-Jinear continuous mapping. Then the
kth Frichet derivative (k E {O,... , K}) of the mapping

f = u 0 (f1 , ... ,1.): E ~ X 1-+ u(fI(X)"",f.(x» E F

at the point Zo E E is given by

j<k)(zo): (Yl ,... , Yk) 1-+ tl .. ~!,;;>Q It! - .~.. J
s
!

11+"'+1,=1<

Here Yk is the group of all permutations of the set of indices {I,... , k} and
ni = L:~llj (l ~ i ~ s).

3. EXISTENCE AND CONSTRUCTION OF A HERMITE

INTERPOLATION POLYNOMIAL PM

Let E be a normed vector space. The points Xi E E, the nonnegative
integers (Xi ~ 0 and the arbitrary elements aik E :t'.k(E; E) are given as in
the first section. We shall prove
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THEOREM 3.1. There exists a continuous polynomial PM: E ~ E of degree
:<:;: M satisfying the Hermite interpolation conditions

p(k)(X.) = a.k
M 1, 't,

where 0 :<:;: i :<:;: m and 0 :<:;: k :<:;: (Xi •

If we call the vector space of all continuous polynomials (on E into E) of
degree :<:;: M nM , then we have solved our Hermite interpolation problem,
if we can find M + I polynomials Qik EnM (0 :<:;: i :<:;: m, 0 :<:;: k :<:;: (Xi) such
that the following conditions are satisfied:

Then

Q(ll(x.) = \al
tk' leI

if 1= k
if I =1= k and 0:<:;: I :<:;: (Xi

if j =1= i, 0:<:;: j :<:;: m, and

m /Xi

PM = L I Qik
i~O k=O

(3.1)
(3.2)

o :<:;: I :<:;: (Xj. (3.3)

(3.4)

solves our Hermite interpolation problem. The polynomial PM ofTheorem 1.1
has such a representation in the case E = ~.

We shall construct mappings L i : E --+ 2(E; E) corresponding to the
functions L i : ~ --+ ~ (see (1.2)). The starting point is the following lemma
(see Prenter [6]).

LEMMA 3.2. If Xo ,... , Xm are m + 1 distinct points of a normed vector
space E, then there exist continuous polynomials Ii: E --+ 2(E; E) of degree
:<:;: m (0 :<:;: i :<:;: m) satisfying

(O:<:;:i,j:<:;:m).

Here idE is the identity map from E to E, defined by idE(x) = x for every x E E.
8ij is the Kronecker symbol, and 0 . idE means the element e1 E 2(E; E).

Now we construct the mappings L i . Let the points Xo ,... , X m be
given. Moreover let (Xo ,... , (Xm be nonnegative integers satisfying
M = 1::0 ((Xi + 1) - 1. We define the following sets of indices:

For fixed i E {O,... , m} and N = {O,... , m}

and

1:= N\{i}, k i := max{(Xj ;j E I}

Iv := {fL E I; (XIL ;;? v} (0 :<:;: v :<:;: k i).
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According to Lemma 3.2 we construct the mappings liv: E -- 2(E; E)
(0 ~ v ~ k i) corresponding to x" , P, E Iv U {i}. Then

where jv E Iv U {i}. If we define Li by

k i

Li(x) = n Ii/x),
v=o

then

where 0 ~ i, j ~ m. Now, for 0 ~ i ~ m and 0 ~ k ~ !Xi, let
Bik: E -- 2(E; E) be defined by

~i-k ~i-(k+,,)

Bik(X) = idE + L (-1)" L L
0=1 mo=o mp ••••maEN

m 1+"'+ma=mo+a

(]

X nL~mp)(Xi)«X - Xi)mp).
p=1

This means, in the notations of Section 2, that the mp-linear continuous
symmetric mapping L~mp)(Xi) E 2";'p(E; 2(E; E)) is applied to L1m(x - Xi)'

Now we can define the polynomials Qik E lIM' Let p

QiO(X) = (BiO(x) " Li(x))(aiO)

Qi1(X) = (a/ 0 Bi1(X) 0 L;{x))(x - Xi)

and

where 2 ~ k ~ !Xi .
Before dealing with the conditions (3.1)-(3.3) in the next section, we shall

show that the Qik are continuous polynomials of degree ~ M.

LEMMA 3.3. For each i = 0,..., m and each k = 0, ... , !Xi the mappings Qik
are elements oflIM.
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Proof According to the construction the mappings liv: E -+ 2(E; E) are
continuous polynomials of degree ~ I Iv I, where I Iv I is the cardinality of Iv .
Then Remark 2.1 shows that Li : E -+ 2(E; E) is a continuous polynomial
of degree <; l:~:() I Iv I = L;:(J,j,o, (0:, + 1). Furthermore Bik : E -+ 2(E; E)
is a continuous polynomial of degree ::::;; ilL, - k, sin<:e

m1 + '" + ma = mo+ 17 ::::;; rYi - (k + u) + u = rYi - k.

Since T",.: E 3 X f-+ X - Xi E E (0::::;; i <; m) is an element of III and
g: E'3 X ~ al E E is an element of lIo , repeated use of Remark 2.1 yields
that Qik: E -- E is a continuous polynomial of degree

m m

::::;; I (0:, + i) + (ai - k) + k = L (a:i + 1) + IY; = M.
;=0 j~O

l~'i j#i

4. PROOF OF THE INTERPOLATION PROPERTIES OF PM

First of aU we prove the interp<I!ation property (3.1). To do that we define
mal'pings Cil<: E ----.. 2(E; E) by

CiO(x) = Bto(X) 6 Li(x)

and

for each k = I, .. " <Xi • As a result <If Theorem 2.2 we have the following

Remark 4.1. Let 1be an integer ~ 1. (YI ,. .., .:vI) E EL and Zo E E. Then
we have

Q~r(ZO)(Yl ,"OJ YI) = a/ 0 (d~)(ZQ)(Yl ,..., YI))

IIi ) _ 1 '\' t
Qik(ZlI)(Yl , ...• Yt - k! i.J 1 I ..... 1 ,

11 ..... !.;;,4) l' k'

11+···+I.=!

(4.1)

(4.2)

(4.3)

x I ai k(f~11)(zo)(···),···,f~~11)(zo)(.··)' cJik)(zo)("'))
IJEYI

where .fA: E '3 X f-+ X - Xi E E (1 ~ A <; k - 1 and 2 <; k < <Xi)'
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LEMMA 4.2. For each i = 0,... , m and each k = 0,..., (Xi we have

Proof

(a) For k = 0 we obtain, based on our definitions,

QiO(X;) = (BiO(xi) 0 Li(xi»(al) = (idE 0 idE)(aiO) = aio.

(b) For k = 1, by (4.2), we have

333

We definegl: E -.. !l'(E; E) by gl(X) = Bil(X) 0 L;(x), g2: E ---+ E by g2(X) =
x - Xi and u: !l'(E; E) x E -.. E by u(h, x) = hex). Using Theorem 2.2 we
get in consequence of g~l)(zo) = idE (zo E E)

di)(Xi) = Bil(Xi) 0 Li(Xi) 0 idE;
therefore

(c) For k = 2, ... , (Xi we look at the representation (4.3) where zo = Xi'
Let (11 ,..., lIt) be a fixed k-tuple satisfying II + ... + lIt = k.

(i) Suppose lIt ?: 2. Then there exists a ,\ (1 :( ,\ :( k - 1) where fA = O.
Therefore the corresponding term vanishes because of fixi) = 0.

(ii) Suppose IA ?: 2 for some ,\ E{I, ... , k - I}. Then f~vJ(zo) = 8v for
arbitrary Zo E E and v ?: 2. Thus the corresponding term vanishes.

(iii) We still have to look at the term where (11"'" lIt) = (1, ... , 1). For
,\ = 1,... , k - 1 and arbitrary zo E E it is valid that f~l)(zo) = idE'
Moreover Cii)(Xi) = idE' Therefore we obtain

a/(Y,,(l) ,..., Y,,(k»'

The statement for k = 2, ... , (Xi follows from (i) to (iii), since the mappings a/
are symmetric.

The property (3.3) follows from the following

LEMMA 4.3. Let i,j E {O,..., m}, i 7'= j, be given. Then

L:O(Xi) = 8 t+1l
C:~)(Xi) = et+1

and

for I = 0,..., (Xi and k = 1,..., (Xi •
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The proof of Lemma 4.3 follows immediately from Theorem 2.2. The
property (3.2) for °::s; I < k is formulated in the following lemma, and can
also be proved without difficulties.

LEMMA 4.4. For i = 0,..., m, k = 0,..., ai and°::s; I < k there is

Proof For k = I the statement holds. Now suppose k ;? 2. We look
at (4.3). Since I < k there exists for each k-tuple (/1"'" Ik ) at least one
,\ E {I, ... , k} for which II. = 0. If,\ = k, then the corresponding term vanishes
because of Cik(Xi) = 0; if'\ E {I, ... , k - I}, then it vanishes sincef,(xi) = 0.

The property (3.2) for the remaining indices k < I <; (Xi follows from
Lemma 4.5. Here we omit the long, but technical proof of that lemma.

LEMMA 4.5. For i = 0,... , m, ai ;? I and I = I, ... , ai we have

for i = 0, ... , m, (Xi ;? 2 and I <; k < I <; ai - k + I we obtain

Theorem 3.1 yields

COROLLARY 4.6. Let f: E ~ V -+ E be a-times Frechet-differentiable in the
open set VeE and let Zo E V. Choosing m = °and aok := f<kl(zo) for each
k = 0,... , (x, then the Hermite interpolation polynomial of degree <; (X
(at the point zo) is the uniquely determined Taylor polynomial of degree <; a
at the point Zo •

5. QUESTIONS CONCERNING UNIQUENESS

If E is the product of the n normed vector spaces E r , i.e., E = n;~1 Er ,
prr: E -+ Er is the canonical projection and jr: Er -+ E (I <; r <; n) is the
canonical injection, then we have for a k-linear continuous mapping
u E ffk(E; E)

n n

U = Ljroprrou =: Ljrour,
r~1 r~1

where Ur E ffk(E; Er) is a k-linear continuous mapping (I <; r <; n). Let
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T: E -- E be a continuous polynomial of degree :(;; M. Then there exist n
continuous polynomials T r : E -- Er of degree :(;; M with

n

T = I: jr 0 Tr ·
r~l

If PM = L:o L~~o Qik fulfills the interpolation conditions (3.1 )-(3.3), then
for the corresponding indices i, i, k, I it follows:

n

Q~r(Xi) = I: ir 0 (prr 0 Qi/,lo(xj)
r~l

for j = i and I = k

for i =1= i or I =1= k.

Thus there exist n continuous polynomials Pr := prr 0 P: E --+ Er satisfying
the interpolation conditions (3.1)-(3.3) for arbitrarily given a~r E .!f,k(E; Er)

and the zero linear operators B!r E .!f1(E; Er) (r = 1,... , n).
Now we look at the normed vector space E = IRn. Then there always exists

for m + 1 arbitrarily given points XiE IRn and for m + 1 nonnegative integers
lXi, satisfying M + 1 = L:o (lXi + 1), a continuous polynomial PM: IRn -- IR
of degree :(;; M with

(0 :(;; i ::::;; m, 0 :(;; k :(;; (Xi),

where the k-linear symmetric mappings al E ~k(lRn; IR) are given. For m = 0
and arbitrarily given mappings aok E ~k(lRn; IR) (0:(;; k :(;; IXo) we get a
uniquely determined Hermite interpolation polynomial.

Thus we have a generalization of the one-dimensional Hermite inter­
polation, which doesn't possess for n ~ 2 and m ~ 1 a uniquely determined
solution, in generaL We shall illustrate these facts on the basis of the number
of the interpolation conditions and of the number of the coefficients of
a polynomial PM: IRn -- IR of degree :(;; M. A homogeneous polynomial
p: IRn __ IR of degree k possesses (k+~-1) coefficients (see C. Coatmelec [2]).
Therefore a polynomial PM: IRn -- IR of degree M consists of
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coefficients. Thus the Taylor polynomial of degree 0:0 is described by e':.+n)
real numbers, which determine the k-linear symmetric mappi~gs
ao~ E ~~(lRn; IR) (0 :(; k :(; 0:0), For m = I and the nonnegative integers 0:0 ,

a1 we obtain by the k-linear symmetric mappings al (i = 0, 1,0 :(; k :(; O:i)
altogether

conditions for the determination of

(
ao + (Xl + n + I)

CXo + (Xl + I

unknowns. For n ~ 2 we have

> (0:0 + n) + I (I + n- 1)
0:0 1=0 1

because of

(
CXo + n+ I) > (n - 1 + I)
cxo+l+1 1

for 1= 0,••., al •

Thus we get for n ~ 2 less interpolation conditions than unknowns and
therefore no unique solution of the Hermite interpolation problems for
m~I.

If we consider certain tensor product Hermite interpolation problems, I.e.,
choosing certain distributions of points in IRn , prescribing partial derivatives
at the points Xi E IRn and interpolating with polynomials p E 0;=1 JIM ,

the tensor product of n spaces of polynomials in one variabl~,
then we obtain uniquely determined Hermite interpolation polynomials
(see W. Haussmann [3, 4]).
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