JOURNAL OF APPROXIMATION THEORY 11, 327-337 (1974)

On Hermite Interpolation in Normed Vector Spaces

HANS-BERND KNOOP

Institut für Mathematik der Ruhr-Universität Bochum, Bochum, West Germany Communicated by Oved Shisha

1. INTRODUCTION

The object of one-dimensional Hermite interpolation is to find a polynomial P_M of degree at most M that satisfies the conditions:

$$P_M^{(k)}(x_i) = a_i^k \qquad (0 \leq i \leq m, 0 \leq k \leq \alpha_i), \tag{1.1}$$

where the m + 1 distinct points $x_i \in \mathbb{R}$, the m + 1 nonnegative integers $\alpha_i \ge 0$, satisfying $M + 1 = \sum_{i=0}^{m} (\alpha_i + 1)$, and the arbitrary real data a_i^k $(0 \le i \le m, 0 \le k \le \alpha_i)$ are given. Now let $x_0, x_1, ..., x_m$ be m + 1 distinct points of a normed vector space E. We shall prove that there always exists a continuous polynomial $P_M: E \to E$ of degree at most M which satisfies (1.1), where now $P_M^{(k)}(x_i)$ is the kth Fréchet derivative of P_M at x_i , and the m + 1 nonnegative integers $\alpha_i \ge 0$, satisfying $M + 1 = \sum_{i=0}^{m} (\alpha_i + 1)$, as well as the k-linear continuous symmetric mappings $a_i^k \in \mathscr{L}_s^k(E; E)$ ($0 \le i \le m$, $0 \le k \le \alpha_i$) are given. P. M. Prenter [6] has solved this problem for $\alpha_i = 0$ and $\alpha_i = 1$ ($0 \le i \le m$), i.e., the Lagrange and the osculatory Hermite interpolation case. Our solution $P_M: E \to E$ will be composed of the mappings $l_i: E \to \mathscr{L}(E; E) = \mathscr{L}_s^1(E; E)$ which were constructed by Prenter [6].

The one-dimensional Hermite interpolation problem is always solvable by a uniquely determined interpolation polynomial $P_M: \mathbb{R} \to \mathbb{R}$ of degree $\leq M$ (see M. Müller [5]). Let the m + 1 functions L_i $(0 \leq i \leq m)$ be defined by

$$L_i: \mathbb{R} \ni x \mapsto \prod_{\substack{j=0\\j \neq i}}^m \left(\frac{x - x_j}{x_i - x_j} \right)^{\alpha_j + 1} \in \mathbb{R}.$$
 (1.2)

Some transformations of the polynomial P_M , which is given by M. Müller [5], yield

THEOREM 1.1. The interpolation polynomial $P_M: \mathbb{R} \to \mathbb{R}$ has the form

$$P_{M}(x) = \sum_{i=0}^{m} \sum_{k=0}^{\alpha_{i}} \frac{1}{k!} (x - x_{i})^{k} \cdot B_{ik}(x) \cdot L_{i}(x) \cdot a_{i}^{k},$$

327

Copyright © 1974 by Academic Press, Inc. All rights of reproduction in any form reserved. where

$$B_{ik}(x) = 1 + \sum_{\sigma=1}^{\alpha_i - k} (-1)^{\sigma} \sum_{m_0 = 0}^{\alpha_i - (k+\sigma)} \sum_{\substack{m_1, \dots, m_\sigma \in \mathbb{N} \\ m_1 + \dots + m_\sigma = m_0 + \sigma}} \\ \times \frac{1}{m_1! \cdots m_{\sigma}!} \prod_{\rho=1}^{\sigma} (L_i^{(m_\rho)}(x_i) \cdot (x - x_i)^{m_\rho})$$

 $L_{i}^{(m_{\rho})}(x_{i})$ is the m_{ρ} th derivative of L_{i} at the point x_{i} .

2. PRELIMINARY NOTES

Let E and F be vector spaces (over the field \mathbb{R} or \mathbb{C}) and $n \ge 1$ an integer. Then the mapping $\mathcal{A}_n: E \to E^n$ is defined by

$$\varDelta_n: E \ni x \mapsto (x, ..., x) \in E^n.$$

If g maps E^n into F, then we shall write for abbreviation $g(x^n)$ instead of $(g \circ \Delta_n)(x)$. Moreover let $\Theta_n: E^n \to F$ be the zero linear operator from E^n to F.

A mapping $f: E \to F$ is called a homogeneous polynomial (on E into F) of degree n, if there exists an n-linear mapping $f_n: E^n \to F$ satisfying $f_n \neq \Theta_n$ and $f = f_n \circ \mathcal{A}_n$. Let $f: E \to F$ be a constant mapping and $\text{Im } f = \{f_0\}$; in this case, we shall call f a homogeneous polynomial of degree 0, and we shall substitute $f(x^0)$ for f_0 .

A mapping $f: E \to F$ is called a *polynomial* (on E into F) of degree $\leq M$, if there exist an integer $M \geq 0$ and a set $T \subset \{0, ..., M\}$ $(T \neq \emptyset)$ such that

$$f = \sum_{i \in T} f_i , \qquad (2.1)$$

where each f_t is a homogeneous polynomial of degree t. If E and F are normed vector spaces and if f has a representation of the form (2.1), where the f_t are continuous homogeneous polynomials, then we shall call f a continuous polynomial of degree $\leq M$.

Remark 2.1 will show how to construct a new polynomial out of given polynomials $f_i: E \to E_i$ (see H. Cartan [1]).

Remark 2.1. Let s + 2 vector spaces $E, E_1, ..., E_s$ and F be given; moreover let $f_i: E \to E_i$ $(1 \le i \le s)$ be polynomials of degree $\le p_i$. If $u: E_1 \times \cdots \times E_s \to F$ is an s-linear mapping, then the mapping $f: E \to F$ defined by

$$f(x) = u(f_1(x),...,f_s(x))$$

is a polynomial (on E into F) of degree $\leq p = \sum_{i=1}^{s} p_i$. If the vector spaces

E, $E_1, ..., E_s$ and F are normed and if the s polynomials f_i and the s-linear mapping u are continuous, then f is a continuous polynomial of degree $\leq p$.

If $f: E \to F$ is a K-times Fréchet-differentiable mapping between the normed vector spaces E and F, then the kth Fréchet derivative of f at $z_0 \in E$ $(0 \le k \le K)$ can be considered as belonging to $\mathscr{L}_s^k(E; F)$, the vector space of all k-linear continuous symmetric mappings of E into F. We obtain

$$f^{(k)}(z_0)(y^k) = (f^{(k)}(z_0) \circ \Delta_k)(y)$$

and

$$f^{(0)}(z_0)(y^0) = f(z_0).$$

If $g_1, ..., g_s$ are elements of $\mathscr{L}(E; E)$, then we shall write

$$\prod_{i=1}^{s} g_i \quad \text{instead of} \quad g_1 \circ \cdots \circ g_s,$$

the composition of the s linear continuous mappings g_i .

In the following we will use a generalization of Leibniz's formula.

THEOREM 2.2. Let the s + 2 normed vector spaces $E, E_1, ..., E_s$ and F be given, and the mappings $f_i: E \to E_i$ $(1 \le i \le s)$ be K-times differentiable at $z_0 \in E$ and $u: E_1 \times \cdots \times E_s \to F$ an s-linear continuous mapping. Then the kth Fréchet derivative $(k \in \{0, ..., K\})$ of the mapping

$$f = u \circ (f_1, \dots, f_s) \colon E \ni x \mapsto u(f_1(x), \dots, f_s(x)) \in F$$

at the point $z_0 \in E$ is given by

$$f^{(k)}(z_0): (y_1, ..., y_k) \mapsto \sum_{\substack{l_1, ..., l_s \ge 0 \\ l_1 + \dots + l_s = k}} \frac{1}{l_1! - \dots + l_s!}$$

$$\times \sum_{II \in \gamma_k} u(f_1^{(l_1)}(z_0)(y_{\pi(1)}, ..., y_{\pi(l_1)}), ..., f_s^{(l_s)}(z_0)(y_{\pi(n_{s-1}+1)}, ..., y_{\pi(k)})).$$

Here γ_k is the group of all permutations of the set of indices $\{1,...,k\}$ and $n_i = \sum_{j=1}^{i} l_j \ (1 \leq i \leq s).$

3. Existence and Construction of a hermite Interpolation Polynomial P_M

Let *E* be a normed vector space. The points $x_i \in E$, the nonnegative integers $\alpha_i \ge 0$ and the arbitrary elements $a_i^k \in \mathscr{L}_s^k(E; E)$ are given as in the first section. We shall prove

THEOREM 3.1. There exists a continuous polynomial $P_M: E \to E$ of degree $\leq M$ satisfying the Hermite interpolation conditions

$$P_M^{(k)}(x_i) = a_i^k,$$

where $0 \leq i \leq m$ and $0 \leq k \leq \alpha_i$.

If we call the vector space of all continuous polynomials (on E into E) of degree $\leq M \prod_M$, then we have solved our Hermite interpolation problem, if we can find M + 1 polynomials $Q_{ik} \in \prod_M (0 \leq i \leq m, 0 \leq k \leq \alpha_i)$ such that the following conditions are satisfied:

$$O_{i}^{(l)}(\mathbf{x}) = \begin{cases} a_i^k & \text{if } l = k \end{cases}$$
 (3.1)

$$\mathcal{Q}_{ik}(x_i) = \{\Theta_l \quad \text{if } l \neq k \text{ and } 0 \leq l \leq \alpha_i$$

$$(3.2)$$

$$Q_{ik}^{(l)}(x_j) = \Theta_l$$
 if $j \neq i$, $0 \leq j \leq m$, and $0 \leq l \leq \alpha_j$. (3.3)

Then

$$P_{M} = \sum_{i=0}^{m} \sum_{k=0}^{\alpha_{i}} Q_{ik}$$
(3.4)

solves our Hermite interpolation problem. The polynomial P_M of Theorem 1.1 has such a representation in the case $E = \mathbb{R}$.

We shall construct mappings $L_i: E \to \mathscr{L}(E; E)$ corresponding to the functions $L_i: \mathbb{R} \to \mathbb{R}$ (see (1.2)). The starting point is the following lemma (see Prenter [6]).

LEMMA 3.2. If $x_0, ..., x_m$ are m + 1 distinct points of a normed vector space E, then there exist continuous polynomials $l_i: E \to \mathscr{L}(E; E)$ of degree $\leq m (0 \leq i \leq m)$ satisfying

$$l_i(x_j) = \delta_{ij} \cdot \mathrm{id}_E$$
 $(0 \leq i, j \leq m).$

Here id_E is the identity map from E to E, defined by $id_E(x) = x$ for every $x \in E$. δ_{ij} is the Kronecker symbol, and $0 \cdot id_E$ means the element $\Theta_1 \in \mathscr{L}(E; E)$.

Now we construct the mappings L_i . Let the points $x_0, ..., x_m$ be given. Moreover let $\alpha_0, ..., \alpha_m$ be nonnegative integers satisfying $M = \sum_{i=0}^{m} (\alpha_i + 1) - 1$. We define the following sets of indices:

For fixed $i \in \{0, ..., m\}$ and $N = \{0, ..., m\}$

$$I := N \setminus \{i\}, \qquad k_i := \max\{\alpha_j ; j \in I\}$$

and

$$I_{
u}:=\{\mu\in I;\,lpha_{\mu}\geqslant
u\}\qquad (0\leqslant
u\leqslant k_{i}).$$

Then

$$I = I_0 \supset I_1 \supset \cdots \supset I_{k_i-1} \supset I_{k_i}.$$

According to Lemma 3.2 we construct the mappings $l_{i\nu}: E \to \mathscr{L}(E; E)$ $(0 \leq \nu \leq k_i)$ corresponding to $x_{\mu}, \mu \in I_{\nu} \cup \{i\}$. Then

$$l_{i\nu}(x_{j_{\nu}}) = \delta_{ij_{\nu}} \cdot \mathrm{id}_{E},$$

where $j_{\nu} \in I_{\nu} \cup \{i\}$. If we define L_i by

$$L_i(x) = \prod_{\nu=0}^{k_i} l_{i\nu}(x),$$

then

$$L_i(x_j) = \delta_{ij} \cdot \mathrm{id}_E$$
,

where $0 \leq i, j \leq m$. Now, for $0 \leq i \leq m$ and $0 \leq k \leq \alpha_i$, let $B_{ik}: E \to \mathscr{L}(E; E)$ be defined by

$$egin{aligned} B_{ik}(x) &= \mathrm{id}_E + \sum\limits_{\sigma=1}^{lpha_i - k} (-1)^\sigma \sum\limits_{m_0 = 0}^{lpha_i - (k + \sigma)} \sum\limits_{m_1, \dots, m_\sigma \in \mathbb{N} \atop m_1 + \dots + m_\sigma = m_0 + \sigma} rac{1}{m_1! \cdot \dots \cdot m_\sigma !} \ & imes \prod\limits_{
ho = 1}^\sigma L_i^{(m_
ho)}(x_i)((x - x_i)^{m_
ho}). \end{aligned}$$

This means, in the notations of Section 2, that the m_{ρ} -linear continuous symmetric mapping $L_i^{(m_{\rho})}(x_i) \in \mathscr{L}_s^m \rho(E; \mathscr{L}(E; E))$ is applied to $\mathcal{L}_{m_{\rho}}(x-x_i)$.

Now we can define the polynomials $Q_{ik} \in \Pi_M$. Let

$$Q_{i0}(x) = (B_{i0}(x) \circ L_i(x))(a_i^0)$$
$$Q_{i1}(x) = (a_i^1 \circ B_{i1}(x) \circ L_i(x))(x - x_i)$$

and

$$Q_{ik}(x) = \frac{1}{k!} \cdot a_i^{k}((x - x_i)^{k-1}, (B_{ik}(x) \circ L_i(x))(x - x_i)),$$

where $2 \leq k \leq \alpha_i$.

Before dealing with the conditions (3.1)–(3.3) in the next section, we shall show that the Q_{ik} are continuous polynomials of degree $\leq M$.

LEMMA 3.3. For each i = 0,..., m and each $k = 0,..., \alpha_i$ the mappings Q_{ik} are elements of Π_M .

640/11/4-4

Proof. According to the construction the mappings $I_{i\nu}: E \to \mathscr{L}(E; E)$ are continuous polynomials of degree $\leq |I_{\nu}|$, where $|I_{\nu}|$ is the cardinality of I_{ν} . Then Remark 2.1 shows that $L_i: E \to \mathscr{L}(E; E)$ is a continuous polynomial of degree $\leq \sum_{\nu=0}^{k_i} |I_{\nu}| = \sum_{j=0, j\neq i}^{m} (\alpha_j + 1)$. Furthermore $B_{ik}: E \to \mathscr{L}(E; E)$ is a continuous polynomial of degree $\leq \alpha_i - k$, since

$$m_1 + \cdots + m_{\sigma} = m_0 + \sigma \leq \alpha_i - (k + \sigma) + \sigma = \alpha_i - k.$$

Since $T_{x_i}: E \ni x \mapsto x - x_i \in E$ $(0 \le i \le m)$ is an element of Π_1 and $g: E \ni x \mapsto a_i^{0} \in E$ is an element of Π_0 , repeated use of Remark 2.1 yields that $Q_{ik}: E \to E$ is a continuous polynomial of degree

$$\leqslant \sum_{\substack{j=0\\j\neq i}}^{m} (\alpha_j+1) + (\alpha_i-k) + k = \sum_{\substack{j=0\\j\neq i}}^{m} (\alpha_j+1) + \alpha_i = M.$$

4. PROOF OF THE INTERPOLATION PROPERTIES OF P_M

First of all we prove the interpolation property (3.1). To do that we define mappings $C_{ik}: E \to \mathscr{L}(E; E)$ by

$$C_{i0}(x) = B_{i0}(x) \circ L_i(x)$$

and

$$C_{ik}(x) = (B_{ik}(x) \circ L_i(x))(x - x_i)$$

for each $k = 1, ..., \alpha_i$. As a result of Theorem 2.2 we have the following

Remark 4.1. Let *l* be an integer ≥ 1 , $(y_1, ..., y_l) \in E^l$ and $z_0 \in E$. Then we have

$$Q_{i0}^{(l)}(z_0)(y_1,...,y_l) = (C_{i0}^{(l)}(z_0)(y_1,...,y_l))(a_i^0)$$
(4.1)

$$Q_{i1}^{(l)}(z_0)(y_1,...,y_l) = a_i^{1} \circ (C_{i1}^{(l)}(z_0)(y_1,...,y_l))$$
(4.2)

$$Q_{ik}^{(l)}(z_0)(y_1,...,y_l) = \frac{1}{k!} \sum_{\substack{l_1,...,l_k \ge 0 \\ l_1+\cdots+l_k=l}} \frac{1}{l_1!\cdots l_k!} \times \sum_{\Pi \in \gamma_l} a_i^{\ k} (f_1^{(l_1)}(z_0)(...),...,f_{k-1}^{(l_{k-1})}(z_0)(...), C_{ik}^{(l_k)}(z_0)(...))$$
(4.3)

where $f_{\lambda}: E \ni x \mapsto x - x_i \in E$ ($1 \leq \lambda \leq k - 1$ and $2 \leq k \leq \alpha_i$).

LEMMA 4.2. For each i = 0, ..., m and each $k = 0, ..., \alpha_i$ we have

$$Q_{ik}^{(k)}(x_i) = a_i^k.$$

Proof.

(a) For k = 0 we obtain, based on our definitions,

$$Q_{i0}(x_i) = (B_{i0}(x_i) \circ L_i(x_i))(a_i^{0}) = (\mathrm{id}_E \circ \mathrm{id}_E)(a_i^{0}) = a_i^{0}$$

(b) For k = 1, by (4.2), we have

$$Q_{i1}^{(1)}(x_i) = a_i^{1} \circ C_{i1}^{(1)}(x_i).$$

We define $g_1: E \to \mathscr{L}(E; E)$ by $g_1(x) = B_{i_1}(x) \circ L_i(x), g_2: E \to E$ by $g_2(x) = x - x_i$ and $u: \mathscr{L}(E; E) \times E \to E$ by u(h, x) = h(x). Using Theorem 2.2 we get in consequence of $g_2^{(1)}(z_0) = \mathrm{id}_E(z_0 \in E)$

$$C_{i1}^{(1)}(x_i) = B_{i1}(x_i) \circ L_i(x_i) \circ \mathrm{id}_E;$$

therefore

$$Q_{i1}^{(1)}(x_i) = a_i^{1}.$$

(c) For $k = 2, ..., \alpha_i$ we look at the representation (4.3) where $z_0 = x_i$. Let $(l_1, ..., l_k)$ be a fixed k-tuple satisfying $l_1 + \cdots + l_k = k$.

- (i) Suppose $l_k \ge 2$. Then there exists a λ $(1 \le \lambda \le k 1)$ where $l_{\lambda} = 0$. Therefore the corresponding term vanishes because of $f_{\lambda}(x_i) = 0$.
- (ii) Suppose $l_{\lambda} \ge 2$ for some $\lambda \in \{1, ..., k-1\}$. Then $f_{\lambda}^{(\nu)}(z_0) = \Theta_{\nu}$ for arbitrary $z_0 \in E$ and $\nu \ge 2$. Thus the corresponding term vanishes.
- (iii) We still have to look at the term where $(l_1, ..., l_k) = (1, ..., 1)$. For $\lambda = 1, ..., k 1$ and arbitrary $z_0 \in E$ it is valid that $f_{\lambda}^{(1)}(z_0) = \mathrm{id}_E$. Moreover $C_{ik}^{(1)}(x_i) = \mathrm{id}_E$. Therefore we obtain

$$a_i^k(y_{\pi(1)},...,y_{\pi(k)}).$$

The statement for $k = 2, ..., \alpha_i$ follows from (i) to (iii), since the mappings a_i^k are symmetric.

The property (3.3) follows from the following

LEMMA 4.3. Let $i, j \in \{0, ..., m\}$, $i \neq j$, be given. Then

$$\begin{array}{l} L_i^{(l)}(x_j) = \Theta_{l+1} \\ C_{i0}^{(l)}(x_j) = \Theta_{l+1} \end{array} (0 \leqslant l \leqslant \alpha_j)$$

and

$$C_{ik}^{(l)}(x_j) = \Theta_{ij}$$

for $l = 0, ..., \alpha_i$ and $k = 1, ..., \alpha_i$.

The proof of Lemma 4.3 follows immediately from Theorem 2.2. The property (3.2) for $0 \le l < k$ is formulated in the following lemma, and can also be proved without difficulties.

LEMMA 4.4. For $i = 0, ..., m, k = 0, ..., \alpha_i$ and $0 \leq l < k$ there is

$$Q_{ik}^{(l)}(x_i) = \Theta_l$$

Proof. For k = 1 the statement holds. Now suppose $k \ge 2$. We look at (4.3). Since l < k there exists for each k-tuple $(l_1, ..., l_k)$ at least one $\lambda \in \{1, ..., k\}$ for which $l_{\lambda} = 0$. If $\lambda = k$, then the corresponding term vanishes because of $C_{ik}(x_i) = 0$; if $\lambda \in \{1, ..., k - 1\}$, then it vanishes since $f_{\lambda}(x_i) = 0$.

The property (3.2) for the remaining indices $k < l \leq \alpha_i$ follows from Lemma 4.5. Here we omit the long, but technical proof of that lemma.

LEMMA 4.5. For i = 0, ..., m, $\alpha_i \ge 1$ and $l = 1, ..., \alpha_i$ we have

$$C_{i0}^{(l)}(x_i) = \Theta_{l+1};$$

for i = 0,...,m, $\alpha_i \ge 2$ and $1 \le k < l \le \alpha_i - k + 1$ we obtain

$$C_{ik}^{(l)}(x_i) = \Theta_l$$

Theorem 3.1 yields

COROLLARY 4.6. Let $f: E \supset V \to E$ be α -times Fréchet-differentiable in the open set $V \subseteq E$ and let $z_0 \in V$. Choosing m = 0 and $a_0^k := f^{(k)}(z_0)$ for each $k = 0, ..., \alpha$, then the Hermite interpolation polynomial of degree $\leq \alpha$ (at the point z_0) is the uniquely determined Taylor polynomial of degree $\leq \alpha$ at the point z_0 .

5. QUESTIONS CONCERNING UNIQUENESS

If E is the product of the *n* normed vector spaces E_r , i.e., $E = \prod_{r=1}^n E_r$, $pr_r: E \to E_r$ is the canonical projection and $j_r: E_r \to E$ ($1 \le r \le n$) is the canonical injection, then we have for a k-linear continuous mapping $u \in \mathscr{L}^k(E; E)$

$$u = \sum_{r=1}^n j_r \circ pr_r \circ u =: \sum_{r=1}^n j_r \circ u_r,$$

where $u_r \in \mathscr{L}^k(E; E_r)$ is a k-linear continuous mapping $(1 \leq r \leq n)$. Let

 $T: E \to E$ be a continuous polynomial of degree $\leq M$. Then there exist *n* continuous polynomials $T_r: E \to E_r$ of degree $\leq M$ with

$$T=\sum_{r=1}^n j_r\circ T_r\,.$$

If $P_M = \sum_{i=0}^{m} \sum_{k=0}^{\alpha_i} Q_{ik}$ fulfills the interpolation conditions (3.1)–(3.3), then for the corresponding indices *i*, *j*, *k*, *l* it follows:

$$Q_{ik}^{(l)}(x_j) = \sum_{r=1}^n j_r \circ (pr_r \circ Q_{ik})^{(l)}(x_j)$$
$$= \begin{cases} \sum_{r=1}^n j_r \circ a_{ir}^k & \text{for } j = i \text{ and } l = k \\ \sum_{r=1}^n j_r \circ \Theta_{lr} & \text{for } j \neq i \text{ or } l \neq k. \end{cases}$$

Thus there exist *n* continuous polynomials $P_r := pr_r \circ P: E \to E_r$ satisfying the interpolation conditions (3.1)-(3.3) for arbitrarily given $a_{ir}^k \in \mathscr{L}_s^k(E; E_r)$ and the zero linear operators $\Theta_{lr} \in \mathscr{L}^l(E; E_r)$ (r = 1, ..., n).

Now we look at the normed vector space $E = \mathbb{R}^n$. Then there always exists for m + 1 arbitrarily given points $x_i \in \mathbb{R}^n$ and for m + 1 nonnegative integers α_i , satisfying $M + 1 = \sum_{i=0}^m (\alpha_i + 1)$, a continuous polynomial $P_M: \mathbb{R}^n \to \mathbb{R}$ of degree $\leq M$ with

$$P_M^{(k)}(x_i) = a_i^{k} \qquad (0 \leq i \leq m, 0 \leq k \leq \alpha_i),$$

where the k-linear symmetric mappings $a_i^k \in \mathscr{L}_s^k(\mathbb{R}^n; \mathbb{R})$ are given. For m = 0and arbitrarily given mappings $a_0^k \in \mathscr{L}_s^k(\mathbb{R}^n; \mathbb{R})$ $(0 \le k \le \alpha_0)$ we get a uniquely determined Hermite interpolation polynomial.

Thus we have a generalization of the one-dimensional Hermite interpolation, which doesn't possess for $n \ge 2$ and $m \ge 1$ a uniquely determined solution, in general. We shall illustrate these facts on the basis of the number of the interpolation conditions and of the number of the coefficients of a polynomial $P_M: \mathbb{R}^n \to \mathbb{R}$ of degree $\le M$. A homogeneous polynomial $p: \mathbb{R}^n \to \mathbb{R}$ of degree k possesses $\binom{k+n-1}{k}$ coefficients (see C. Coatmelec [2]). Therefore a polynomial $P_M: \mathbb{R}^n \to \mathbb{R}$ of degree M consists of

$$\sum_{k=0}^{M} \binom{k+n-1}{k} = \binom{M+n}{M}$$

coefficients. Thus the Taylor polynomial of degree α_0 is described by $\binom{\alpha_0+n}{\alpha_0}$ real numbers, which determine the k-linear symmetric mappings $a_0^k \in \mathscr{L}_s^k(\mathbb{R}^n; \mathbb{R})$ $(0 \leq k \leq \alpha_0)$. For m = 1 and the nonnegative integers α_0 , α_1 we obtain by the k-linear symmetric mappings a_i^k $(i = 0, 1, 0 \leq k \leq \alpha_i)$ altogether

$$\binom{\alpha_0+n}{\alpha_0}+\binom{\alpha_1+n}{\alpha_1}$$

conditions for the determination of

$$\binom{\alpha_0+\alpha_1+n+1}{\alpha_0+\alpha_1+1}$$

unknowns. For $n \ge 2$ we have

$$\binom{\alpha_{0} + \alpha_{1} + n + 1}{\alpha_{0} + \alpha_{1} + 1} = \sum_{k=0}^{\alpha_{0} + \alpha_{1} + 1} \binom{k + n - 1}{k}$$

$$= \sum_{k=0}^{\alpha_{0}} \binom{k + n - 1}{k} + \sum_{k=\alpha_{0} + 1}^{\alpha_{0} + \alpha_{1} + 1} \binom{k + n - 1}{k}$$

$$> \binom{\alpha_{0} + n}{\alpha_{0}} + \sum_{l=0}^{\alpha_{1}} \binom{l + n - 1}{l}$$

$$= \binom{\alpha_{0} + n}{\alpha_{0}} + \binom{\alpha_{1} + n}{\alpha_{1}}$$

because of

$$\binom{\alpha_0+n+l}{\alpha_0+1+l} > \binom{n-1+l}{l}$$
 for $l=0,...,\alpha_1$.

Thus we get for $n \ge 2$ less interpolation conditions than unknowns and therefore no unique solution of the Hermite interpolation problems for $m \ge 1$.

If we consider certain tensor product Hermite interpolation problems, i.e., choosing certain distributions of points in \mathbb{R}^n , prescribing partial derivatives at the points $x_i \in \mathbb{R}^n$ and interpolating with polynomials $p \in \bigotimes_{r=1}^n \Pi_{M_r}$, the tensor product of *n* spaces of polynomials in one variable, then we obtain uniquely determined Hermite interpolation polynomials (see W. Haussmann [3, 4]).

336

References

- 1. H. CARTAN, "Calcul Différentiel," Hermann, Paris, 1967.
- C. COATMELEC, Approximation et interpolation des fonctions différentiables de plusieurs variables, Ann. Sci. Ecole Norm. Sup. (3) 83 (1966), 271-341.
- 3. W. HAUSSMANN, Tensorprodukte und mehrdimensionale Interpolation, Math. Z. 113 (1970), 17-23.
- 4. W. HAUSSMANN, Tensorproduktmethoden bei mehrdimensionaler Interpolation, Math. Z. 124 (1972), 191–198.
- 5. M. MÜLLER, Über Interpolation mittels ganzer rationaler Funktionen, Math. Z. 62 (1955), 292-309.
- 6. P. M. PRENTER, Lagrange and Hermite interpolation in Banach spaces, J. Approximation Theory 4 (1971), 419-432.